Efficient Inhibition of Ovarian Cancer by Gelonin Toxin Gene Delivered by Biodegradable Cationic Heparin-polyethyleneimine Nanogels
نویسندگان
چکیده
The use of toxins for cancer therapy has great promise. Gelonin, a potent plant toxin, causes cell death by inactivating the 60S ribosomal subunit. Recently, we developed a novel gene delivery system using biodegradable cationic heparin-polyethyleneimine (HPEI) nanogels. In the current study, the antitumor activity of a recombinant plasmid expressing gelonin (pGelonin) on human ovarian cancer was assessed. The application of HPEI nanogels, was also evaluated. Gelonin-cDNA was cloned into the pVAX1 plasmid vector and transfected into SKOV3 human ovarian cancer cells using biodegradable cationic HPEI nanogels. The expression of gelonin in vitro and in vivo was confirmed using RT-PCR and western blot analysis. Cell viability and apoptosis were examined using an MTT assay and flow cytometric analysis. For the in vivo study, an SKOV3 intraperitoneal ovarian carcinomatosis model was established, and nude mice were randomly assigned into four groups receiving i.p. administration of pGelonin/HPEI complexes, pVAX/HPEI complexes, HPEI alone and 5% glucose solution. The tumor weight was monitored, and a TUNEL assay and Ki-67 immunohistochemistry were performed to evaluate apoptosis and cell proliferation in the tumor tissue sections, respectively. Gelonin was efficiently expressed in SKOV3 cancer cells in vitro and in vivo using pGelonin incorporated with HPEI nanogels. The pGelonin/HPEI complexes inhibited cell viability and induced apoptosis in the cell culture. Treatment for intraperitoneal carcinomatosis with pGelonin/HPEI complexes reduced the tumor weight by ~58.55% compared to the control groups (P<0.05). The antitumor effect was accompanied by increased apoptosis and reduced cell proliferation (P<0.05). No significant side effects were observed with i.p. administration of the pGelonin/HPEI complexes. Our data indicate that HPEI nanogel-delivered pGelonin may have promising applications against human ovarian cancer.
منابع مشابه
Efficient inhibition of an intraperitoneal xenograft model of human ovarian cancer by HSulf-1 gene delivered by biodegradable cationic heparin-polyethyleneimine nanogels.
The HSulf-1 (heparan sulfate 6-O-endosulfatase 1) gene is an important element that modulates the sulfation status of heparan sulfate proteoglycans (HSPGs), leading to the interference of HSPG-related signal transduction pathways. HSulf-1 plays a key role in regulating cell proliferation, tumorigenesis and angiogenesis. Recently, some studies have...
متن کاملEnhanced antitumor effect of biodegradable cationic heparin-polyethyleneimine nanogels delivering FILIP1LΔC103 gene combined with low-dose cisplatin on ovarian cancer
FILIP1LΔC103 (COOH terminal truncation mutant 1-790 of Filamin A Interacting Protein 1-Like) has been identified to hold therapeutic potential for suppressing tumor growth. Cisplatin (DDP) is commonly used as a first-line drug in the treatment for ovarian cancer. The usage of polymeric nanoparticles to deliver functional genes intraperitoneally holds much promise as an effective therapy for ova...
متن کاملEfficient inhibition of ovarian cancer by degradable nanoparticle-delivered survivin T34A gene
Gene therapy has promising applications in ovarian cancer therapy. Blocking the function of the survivin protein could lead to the growth inhibition of cancer cells. Herein, we used degradable heparin-polyethyleneimine (HPEI) nanoparticles to deliver a dominant-negative human survivin T34A (hs-T34A) gene to treat ovarian cancer. HPEI nanoparticles were characterized and were found to have a dyn...
متن کاملNanoparticle-delivered suicide gene therapy effectively reduces ovarian tumor burden in mice.
There is currently no effective therapy for patients with advanced ovarian cancer. To address the need for a more effective treatment for this deadly disease, we conducted preclinical tests in ovarian tumor-bearing mice to evaluate the therapeutic efficacy of using a cationic biodegradable poly(beta-amino ester) polymer as a vector for nanoparticulate delivery of DNA encoding a diphtheria toxin...
متن کاملHighly Efficient Intracellular Protein Delivery by Cationic Polyethyleneimine-Modified Gelatin Nanoparticles
Intracellular protein delivery may provide a safe and non-genome integrated strategy for targeting abnormal or specific cells for applications in cell reprogramming therapy. Thus, highly efficient intracellular functional protein delivery would be beneficial for protein drug discovery. In this study, we generated a cationic polyethyleneimine (PEI)-modified gelatin nanoparticle and evaluated its...
متن کامل